Опрос матричной клавиатуры avr. Учебный курс. Опрос матричной клавиатуры. Пример использования автомата (State Machine). Для чего нужна матричная клавиатура

При необходимости использования в устройстве клавиатуры с большим количеством кнопок, например в кодовом замке, очень часто применяют матричную клавиатуру. Если подключить 12 кнопок обычным способом потребуется 12 выводов микроконтроллера плюс общий провод, в матрице же используется всего один порт контроллера, что способствует экономии выводов контроллера. Кнопки в такой клавиатуре подключаются к общим столбцам и к общим строкам, линии порта микроконтроллера разделяются на ввод PB7-PB4 и вывод PB3-PB0. В каждый момент времени сигнал низкого уровня (логический ноль) подается только на одну строку кнопок, на остальные должна подаваться логическая единица. Это исключит неоднозначность определения номера нажатой кнопки. Двоичные сигналы, присутствующие при этом на столбцах клавиатуры, считываются через порт ввода микроконтроллера.

В программе обязательно организовываем бесконечный цикл. В специальной функции производим опрос клавиатуры, анализируем полученные данные и выводим результата на индикатор. Опрос клавиатуры заключается в последовательном сканировании каждой строки, для этого на соответствующую линию порта вывода подается логический ноль (эквивалент общего провода), на остальных строках должен быть высокий уровень, после чего с порта ввода, к которому подключены столбцы, считывается код. Если считаны все единицы, то ни одна из клавиш не нажата, в противном случае код содержит информацию о нажатых клавишах. Стоит заметить, что считанный код содержит не только номер замкнутого контакта, но и информацию о нажатии нескольких кнопок одновременно, поэтому лучше хранить в памяти контроллера непосредственно считанный код, а не готовый номер кнопки. Для хранения считанного кода следует ввести специальный алгоритм и переменные.

Ниже показан пример программы в которой при нажатии определенной клавиши ее значение высвечивается на семисегментном индикаторе. Микроконтроллер Atmega8 работает от внутреннего генератора частотой 8MHz.

/*** Подключение матричной клавиатуры к микроконтроллерам AVR ***/ #include #include // Массив значений для порта вывода unsigned char key_tab = {0b11111110, 0b11111101, 0b11111011, 0b11110111}; // Функция опроса клавиатуры unsigned char scan_key(void) { unsigned char key_value = 0; unsigned char i; for(i = 0;i < 4;i++) { PORTB = key_tab[i]; // выводим лог. 0 в порт вывода _delay_us(10); switch (PINB & 0xF0) { case 0b11100000: key_value = 1 + i * 3; return (key_value); case 0b11010000: key_value = 2 + i * 3; return (key_value); case 0b10110000: key_value = 3 + i * 3; return (key_value); default: break; } } return (key_value); } int main(void) { // массив цифр для индикатора unsigned char num = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F}; DDRB |= (1 << PB3)|(1 << PB2)|(1 << PB1)|(1 << PB0); // Порт вывода DDRB &= ~(1 << PB7)|(1 << PB6)|(1 << PB5)|(1 << PB4); // Порт ввода PORTB = 0xF0; // Устанавливаем лог. 1 в порт ввода DDRD = 0xFF; // Выход на индикатор PORTD = 0x00; _delay_ms(10); while(1) { // Выводим значение нажатой кнопки на индикатор if(scan_key()==1) PORTD = num; if(scan_key()==2) PORTD = num; if(scan_key()==3) PORTD = num; if(scan_key()==4) PORTD = num; if(scan_key()==5) PORTD = num; if(scan_key()==6) PORTD = num; if(scan_key()==7) PORTD = num; if(scan_key()==8) PORTD = num; if(scan_key()==9) PORTD = num; if(scan_key()==11) PORTD = num; } }

Архив для статьи "Подключение матричной клавиатуры к микроконтроллерам AVR"
Описание: Проект AVRStudio и Proteus
Размер файла: 37.33 KB Количество загрузок: 1 905

Иногда мы сталкиваемся с проблемой нехватки портов на Arduino. Чаще всего это относится к моделям с небольшим количеством выводов. Для этого была придумана матричная клавиатура. Такая система работает в компьютерных клавиатурах, калькуляторах, телефонах и других устройств, в которых используется большое количество кнопок.

Для Arduino чаще всего используются такие клавиатуры:

Самыми распространенными являются 16 кнопочные клавиатуры 4x4. Принцип их работы достаточно прост, Arduino поочередно подает логическую единицу на каждый 4 столбцов, в этот момент 4 входа Arduino считывают значения, и только на один вход подается высокий уровень. Это довольно просто, если знать возможности управления портами вывода в Arduino , а так же портами входа/ввода.

Для программирования можно использовать специализированную библиотеку Keypad, но в этой статье мы не будем её использовать для большего понимания работы с матричной клавиатуры.

Подключаем клавиатуру в любые порты ввода/вывода.

На красные порты будем подавать сигналы, а с синих будем их принимать. Зачастую на синие провода подводят подтягивающие резисторы, но мы их подключим внутри микроконтроллера Arduino .

В программе будем вычислять нажатую кнопку и записывать её в Serial порт.
В данном методе есть один значительный недостаток: контроллер уже не может выполнять других задач стандартными методами. Эта проблем решается подключением матричной клавиатуры с использованием прерываний .

Int PinOut {5, 4, 3, 2}; // пины выходы int PinIn {9, 8, 7, 6}; // пины входа int val = 0; const char value { {"1", "4", "7", "*"}, {"2", "5", "8", "0" }, {"3", "6", "9", "#"}, {"A", "B", "C", "D"} }; // двойной массив, обозначающий кнопку int b = 0; // переменная, куда кладется число из массива(номер кнопки) void setup() { pinMode (2, OUTPUT); // инициализируем порты на выход (подают нули на столбцы) pinMode (3, OUTPUT); pinMode (4, OUTPUT); pinMode (5, OUTPUT); pinMode (6, INPUT); // инициализируем порты на вход с подтяжкой к плюсу (принимают нули на строках) digitalWrite(6, HIGH); pinMode (7, INPUT); digitalWrite(7, HIGH); pinMode (8, INPUT); digitalWrite(8, HIGH); pinMode (9, INPUT); digitalWrite(9, HIGH); Serial.begin(9600); // открываем Serial порт } void matrix () // создаем функцию для чтения кнопок { for (int i = 1; i <= 4; i++) // цикл, передающий 0 по всем столбцам { digitalWrite(PinOut, LOW); // если i меньше 4 , то отправляем 0 на ножку for (int j = 1; j <= 4; j++) // цикл, принимающих 0 по строкам { if (digitalRead(PinIn) == LOW) // если один из указанных портов входа равен 0, то.. { Serial.println(value); // то b равно значению из двойного массива delay(175); } } digitalWrite(PinOut, HIGH); // подаём обратно высокий уровень } } void loop() { matrix(); // используем функцию опроса матричной клавиатуры }

С использованием библиотеки считывание данных с цифровой клавиатуры упрощается.

#include const byte ROWS = 4; const byte COLS = 3; char keys = { {"1","2","3"}, {"4","5","6"}, {"7","8","9"}, {"#","0","*"} }; byte rowPins = {5, 4, 3, 2}; byte colPins = {8, 7, 6}; Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS); void setup(){ Serial.begin(9600); } void loop(){ char key = keypad.getKey(); if (key != NO_KEY){ Serial.println(key); } }

Пора бы рассказать как организовать опрос такой клавы. Напомню, что клава представляет из себя строки, висящие на портах и столбцы, которые сканируются другим портом. Код написан для контроллера ATMega8535 , но благодаря тому, что все там указано в виде макросов его можно быстро портировать под любой другой контроллер класса Mega , а также под большую часть современных Tiny . Хотя в случае с Tiny может быть некоторый затык ввиду неполного набора команд у них. Придется чуток дорабатывать напильником.

Короче, ближе к коду. Сразу оговорюсь, что я взял моду крошить один проект на десяток мелких файлов, а потом подключать их по мере необходимости. Во-первых, это резко структурирует код, позволяя легче в нем ориентироваться, а во-вторых, код становится модульным и его куски можно использовать как готовые библиотеки в других программах. Только подправить чуток. По этой же причине я все определения делаю через макросы, чтобы не пришлось править весь код, а достаточно было только пару строк изменить в файле конфигурации.

Теперь коротко о файлах:
keyboard_define.inc — файл конфигурации клавиатуры.
В этом файле хранятся все макроопределения используемые клавиатурой. Здесь мы задаем какие ножки микроконтроллера к какой линии подключены. Одна тонкость — выводы на столбцы (сканирующий порт ) должны быть последовательным набором линий одного порта. То есть, например, ножки 0,1,2,3 или 4,5,6,7 , или 3,4,5,6 . Неважно какого порта, главное чтобы последовательно.
С определением ножек, думаю проблем не возникнет, а вот по поводу параметра KEYMASK я хочу рассказать особо.
Это маска по которой будет выделяться сканируемый порт. В ней должны быть 6 единиц и один 0. Ноль выставляется в крайне правую позицию сканирующего порта.

Пример:
У меня сканирующий порт висит на битах 7,6,5,4 крайне правый бит сканирующего порта это бит 4, следовательно маска равна 0b11101111 — ноль стоит на 4й позиции. Если сканирующие линии будут висеть на ножках 5,4,3,2, то маска уже будет 0b11111011 — ноль на второй позиции. Зачем это все будет объяснено ниже.

Также есть маска активных линий сканирующего порта — SCANMSK . В ней единицы стоят только напротив линий столбцов. У меня столбцы заведены на старшую тетраду порта, поэтому сканирующая маска имеет вид 0b11110000 .

В разделе инициализации нужно не забыть настроить ножки сканирующего порта на выход, а ноги считывающего на вход с подтяжкой. А потом вставить код обработчика клавиатуры куда-нибудь в виде обычной подпрограммы. Пользоваться просто — вызываем подпрограмму чтения с клавы, а когда возвращаемся у нас в регистре R16 находится скан код клавиши.

Вот так у меня выглядел тестовый код:

Main: SEI ; Разрешаем прерывания.

RCALL KeyScan ; Сканируем клавиатуру
CPI R16,0 ; Если вернулся 0 значит нажатия не было
BREQ Main ; В этом случае переход на начало
RCALL CodeGen ; Если вернулся скан код, то переводим его в
; ASCII код.

MOV R17,R16 ; Загружаем в приемный регистр LCD обработчика
RCALL DATA_WR ; Выводим на дисплей.

RJMP Main ; Зацикливаем все нафиг.

Про LCD дисплей я пока ничего не скажу, так как процедуры еще не доведены до ума, но будут выложены и разжеваны в ближайшее время.

Теперь расскажу как работает процедура KeyScan

Def COUNT = R18
KeyScan: LDI COUNT,4 ; Сканим 4 колонки
LDI R16,KEYMASK ; Загружаем маску на скан 0 колонки.

Вначале мы подготавливаем сканирующую маску. Дело в том, что мы не можем вот так взять и гнать данные в порт. Ведь строки висят только на последних четырех битах, а на первых может быть что угодно, поэтому нам главное ни при каких условиях не изменить состояние битов младшей тетрады порта.

KeyLoop: IN R17,COL_PORT ; Берем из порта прежнее значение
ORI R17,SCANMSK ; Выставляем в 1 биты сканируемой части.


Вначале загружаем данные из регистра порта , чтобы иметь на руках первоначальную конфигурацию порта. Также нам нужно выставить все сканирующие биты порта в 1, это делается посредством операции ИЛИ по сканирующей маске. В той части где стояли единицы после операции ИЛИ по маске 11110000 (мое значение SCANMASK ) все биты станут единицами, а где был ноль останутся без изменений.

AND R17,R16 ; Сбрасываем бит сканируемого столбца
OUT COL_PORT,R17 ; Выводим сформированный байт из порта.


Теперь мы на сформированный байт накладываем маску активного столбца . В ней вначале ноль на первой позиции, а все остальные единицы. В результате, другие значения порта не изменятся, а вот в первом столбце возникнет 0. Потом маска сдвинется, а вся операция повторится снова. В результате ноль будет уже в следующем столбце и так далее. Таким образом, мы организуем «бегающий» нолик в сканирующем порте, при неизменности других, посторонних, битов порта. А дальше сформированное число загружается в регистр порта и ножки принимают соответствующие уровни напряжений.

NOP ; Задержка на переключение ноги.
NOP
NOP
NOP

SBIS ROW0_PIN,ROW0 ; Проверяем на какой строке нажата
RJMP bt0

SBIS ROW1_PIN,ROW1
RJMP bt1

SBIS ROW2_PIN,ROW2
RJMP bt2

SBIS ROW3_PIN,ROW3
RJMP bt3


Серия NOP нужна для того, чтобы перед проверкой дать ножке время на то, чтобы занять нужный уровень. Дело в том, что реальная цепь имеет некоторое значение емкости и индуктивности, которое делает невозможным мгновенное изменение уровня , небольшая задержка все же есть. А на скорости в 8Мгц и выше процессор щелкает команды с такой скоростью, что напряжение на ноге еще не спало, а мы уже проверяем состояние вывода. Вот я и влепил несколько пустых операций. На 8Мгц все работает отлично. На большую частоту, наверное, надо будет поставить еще штук пять шесть NOP или влепить простенький цикл. Впрочем, тут надо поглядеть на то, что по байтам будет экономичней.
После циклов идет четыре проверки на строки. И переход на соответствующую обработку события.

ROL R16 ; Сдвигаем маску сканирования
DEC COUNT ; Уменьшаем счетчик столбцов
BRNE KeyLoop ; Если еще не все перебрали делаем еще одну итерацию

CLR R16 ; Если нажатий не было возвращаем 0
RET
.undef COUNT

Вот тут происходит сдвиг маски влево командой циклического сдвига ROL . После чего мы уменьшаем счетчик итераций (изначально равен четырем, так как у нас четыре столбца). Если нажатий не было, то по окончании всех четырех итераций мы вываливаемся из цикла, обнуляем регистр R16 и возвращаемся.


bt0: ANDI R16,SCANMSK ; Формируем скан код
ORI R16,0x01 ; Возвращаем его в регистре 16
RET

А вот один из возможных концов при нажатии. Тут формируется скан код который вернется в регистре R16. Я решил не заморачиваться, а как всегда зажать десяток байт и сделать как можно быстрей и короче. Итак, что мы имеем по приходу в этот кусок кода. А имеем мы один из вариантов сканирующего порта (1110,1101,1011,0111 ), а также знаем номер строки по которой мы попали сюда. Конкретно в этот кусок можно попасть только из первой строки по команде RJMP bt0.
Так давай сделаем скан код из сканирующей комбинации и номера строки! Сказано — сделано! Сначала нам надо выделить из значения порта сканирующую комбинацию — она у нас хранится в регистре R16 , поэтому выковыривать из порта ее нет нужды. Продавливаем операцией И значение R16 через SCANMASK и все что было под единичками прошло без изменений, а где были нули — занулилось. Опа, и у нас выведен сканирующий кусок — старший полубайт. Теперь вклеим туда номер строки — операцией ИЛИ . Раз, и получили конструкцию вида [скан][строка]
Вот ее и оставляем в регистре R16 , а сами выходим прочь! Также и с остальными строками. Погляди в исходнике, я их не буду тут дублировать.

Декодирование скан кода.
Отлично, скан код есть, но что с ним делать? Его же никуда не приткнуть. Мы то знаем, что вот эта шняга вида 01110001 это код единички, а какой нибудь LCD экран или стандартная терминалка скорчит нам жуткую кракозябру и скажет, нам все что она думает о нашей системе обозначений — ей видите ли ASCII подавай. Ладно, будет ей ASCII.

Как быть? Прогнать всю конструкцию по CASE где на каждый скан код присвоить по ASCII коду меня давит жаба — это же сколько надо проверок сделать! Это же сколько байт уйдет на всю эту тряхомудию? А память у нас не резиновая, жалкие восемь килобайт, да по два байта на команду, это в лучшем случае. Я мог все это сделать прям в обработчике клавиатуры. НЕТ!!! В ТОПКУ!!! Мы пойдем своим путем.
Ок, а что у нас есть в запасе? Метод таблиц перехода не катит, по причине жуткой неупорядоченности скан кодов. Почесал я тыковку, пошарился по квартире… и тут меня осенило. Конечно же!!! Брутфорс!!!

Брутфорсим скан код.
Итак, у нас есть жутко несваримый скан код, а также стройная таблица ASCII символов. Как скрестить ужа с ежом? Да все просто! Разместим в памяти таблицу символов в связке [скан код]: , а потом каждый нужный скан код будем прогонять через эту таблицу и при совпадении подставлять на выходе нужный ASCII из связки. Классический пример программизма — потеряли во времени, зато выиграли в памяти.

Вот так это выглядит:

CodeGen:LDI ZH,High(Code_Table*2) ; Загрузил адрес кодовой таблицы
LDI ZL,Low(Code_Table*2) ; Старший и младший байты

Тут мы загрузили в индексный регистр адрес нашей таблицы. Умножение на два для того, чтобы адрес был в байтах, т.к. в среде компилятора пространство кода адресуется в словах.

Brute: LPM R17,Z+ ; Взял из таблицы первый символ — скан код

CPI R17,0xFF ; Если конец таблицы
BREQ CG_Exit ; То выходим

CPI R16,0 ; Если ноль,
BREQ CG_Exit ; то выходим

CP R16,R17 ; Сравнил его со скан кодом клавиши.
BREQ Equal ; Если равен, то идем подставлять ascii код

Загружаем из таблицы первый скан код и нычим его в регистр R17 , попутно увеличиваем адрес в регистре Z (выбор следующей ячейки таблицы) и первым делом сравниваем его с FF — это код конца таблицы. Если таблица закончилась, то выходим отсюда. Если мы не всю таблицу перебрали, то начинаем сравнивать входное значение (в регистре R16 ) вначале с нулем (нет нажатия), если ноль тоже выходим. И со скан кодом из таблицы. Если скан таблицы совпадает со сканом на входе, то переходим на Equal .

LPM R17,Z+ ; Увеличиваем Z на 1
RJMP Brute ; Повтор цикла

А в случае если ничо не обнаружено, то мы повторно вызываем команду LPM R17,Z+ лишь для того, чтобы она увеличила Z на единичку — нам же надо перешагнуть через ASCII код и взять следующий скан код из таблицы. Просто INC Z не прокатит, так как Z у нас двубайтный . ZL и ZH . В некторых случаях достаточно INC ZL , но это в случае когда мы точно уверены в том, что адрес находится недалеко от начала и переполнения младшего байта не произойдет (иначе мы вместо адреса 00000001:00000000 получим просто 00000000:0000000, что в корне неверно), а команда LPM все сделает за нас, так что тут мы сэкономили еще пару байт. Потом мы вернемся в начало цикла, а там будет опять LPM которая загрузит уже следующий скан код.

Equal: LPM R16,Z ; Загружаем из памяти ASCII код.
RET ; Возвращаемся

Если же было совпадение, то в результате LPM Z+ у нас Z указывает на следующую ячейку — с ASCII кодом. Ее мы и загружаем в регистр R16 и выходим наружу.

CG_Exit: CLR R16 ; Сбрасываем 0 = возвращаем 0
RET ; Возвращаемся

А в случае нулевого исхода, когда либо таблица кончилась, а скан код так и не подобрался, либо ноль был в регистре R16 на входе — возвращаемся с тем же нулем на выходе. Вот так вот.



; STATIC DATA
;========================================
Code_Table: .db 0x71,0x31 ;1
.db 0xB1,0x32 ;2
.db 0xD1,0x33 ;3
.db 0x72,0x34 ;4
.db 0xB2,0x35 ;5
.db 0xD2,0x36 ;6
.db 0x73,0x37 ;7
.db 0xB3,0x38 ;8
.db 0xD3,0x39 ;9
.db 0x74,0x30 ;0
.db 0xFF,0 ;END

Тут просто табличка статичных данных, на границе памяти. Как видишь данные сгруппированы по два байта — сканкод/ASCII

Вот посредством таких извратов вся программа, с обработкой клавиатуры, декодированием скан кода, чтением/записью в LCD индикатор и обнулением оперативки (нужно для того, чтобы точно быть увереным, что память равна нулю) заняло всего 354 байта . Кто сможет меньше?

Допустим нам надо подавать команды нашему девайсу. Проще всего это делать посредством обычных кнопок, повешенных на порт. Но одно дело когда кнопок две три, и другое когда их штук двадцать. Не убивать же ради этого двадцать выводов контроллера. Решение проблемы есть — матрицирование . То есть кнопки группируются в ряды и столбцы, а полученная матрица последовательно опрашивается микроконтроллером, что позволяет резко снизить количество нужных выводов ценой усложнения алгоритма опроса.

Клавиатурная матрица.
Я ее нарисовал тебе на первой картинке. Как видишь, там есть строки и столбцы. Кружочками обозначены кнопки. Включены они так, что при нажатии кнопка замыкает строку на столбец.

Считывающий порт включается в режиме Pull-up входа, то есть вход с подтягивающими резисторами. Если контроллер это не поддерживает, то эти резисторы надо повесить снаружи.

Сканирующий порт работает в режиме выхода, он подключен к столбцам. Столбцы должны быть подтянуты резисторами к питанию. Впрочем, если используется полноценный Push-Pull то подтяжка не нужна — выход сам поднимет ногу на нужный уровень.

Работает следующим образом.

В сканирующий порт выводится значение, состоящее из одного нуля и единицы на всех остальных выводах. Пусть, например, ноль будет на выводе А. Наличие нуля сразу же придавливает подтяжку и весь столбец ложится на землю.

Теперь считываем сразу все значение из читающего порта. Если на столбце А не нажата ни одна кнопка, то в порту будут все единички. Но стоит нажать любую кнопку из столбца А, так она сразу же замкнет линию А, на этот вывод порта. В линии А у нас в данный момент 0, это обеспечивает ноль на сканирующем выводе контроллера. Поэтому и на соответствующем выводе порта будет 0
Так что, если будет нажата кнопка, например, 6, то на линии Р1 будет 0.

Потом число в сканирующем порту сдвигается на один бит влево (или вправо) и сканируется второй столбец и так по кругу. В итоге, зная какой столбец мы сканируем, получив ноль на считывающем порту, мы, как по координатам, поймем какая кнопка из матрицы нажата.

Можно определить одновременные нажатия многих кнопок — надо просто делать проверку не по байту, а по конкретному биту.

Увеличение разрядности
Но что делать если у нас кнопок не просто много, а очень много. Что даже матрицирование не спасает от огромного расхода линий порта. Тут приходится либо жертвовать несколько портов, либо вводить дополнительную логику. Например дешифратор с инверсным выходом .

Дешифратор , это такая микросхема, принимающая на вход двоичный код, а на выходе выдает единицу в выбранный разряд. Т.е. подали число «101» — получили «1» на выводе номер 5. Ну, а у инверсного дешифратора будет 0.

Можно пойти еще дальше и поставить микросхему счетчик, который дергать импульсом с порта, значение со счетчика прогонять через дешифратор. Таким образом, можно влепить сколько угодно выводов, хватило бы разрядности дешифратора. Главное учитывать на каком такте счетчика у нас будет какой столбец.

Если сканируется обычная клавиатура, нажимаемая человеком, то можно не заморачиваться на скорость опроса и сделать его в качестве побочного продукта, повесив на какое-нибудь левое прерывание. Достаточно чтобы клава опрашивалась хотя бы 10-20 раз в секунду. Этого уже достаточно, для комфортной работы.

Дребезг контактов и борьба с ним.
При работе с механическими кнопками возникает одна проблема — дребезг контактов . Суть его в том, что при замыкании контакт срабатывает не один раз, а в момент замыкания и размыкания происходит несколько срабатываний . Происходит это от того, что идеальный контакт возникает не сразу, а через какое то время, искрит и скрежещет, хоть это и не видно. Вот и получается, что вместо одного перепада получаем вначале серию всплесков и только потом возникает устойчивое состояние.

Но микроконтроллер работает с такой скоростью, что успевает посчитать эти всплески как устойчивые состояния. Решить эту проблему можно аппаратно, с помощью RS триггера, так и программно — внеся небольшую задержку перед следующим опросом кнопки . Задержка подбирается такой, чтобы дребезг успел прекратиться к ее окончанию.

При необходимости использования в устройстве клавиатуры с большим количеством кнопок, например в кодовом замке, очень часто применяют матричную клавиатуру. Если подключить 12 кнопок обычным способом потребуется 12 выводов микроконтроллера плюс общий провод, в матрице же используется всего один порт контроллера, что способствует экономии выводов контроллера. Кнопки в такой клавиатуре подключаются к общим столбцам и к общим строкам, линии порта микроконтроллера разделяются на ввод PB7-PB4 и вывод PB3-PB0. В каждый момент времени сигнал низкого уровня (логический ноль) подается только на одну строку кнопок, на остальные должна подаваться логическая единица. Это исключит неоднозначность определения номера нажатой кнопки. Двоичные сигналы, присутствующие при этом на столбцах клавиатуры, считываются через порт ввода микроконтроллера.

В программе обязательно организовываем бесконечный цикл. В специальной функции производим опрос клавиатуры, анализируем полученные данные и выводим результата на индикатор. Опрос клавиатуры заключается в последовательном сканировании каждой строки, для этого на соответствующую линию порта вывода подается логический ноль (эквивалент общего провода), на остальных строках должен быть высокий уровень, после чего с порта ввода, к которому подключены столбцы, считывается код. Если считаны все единицы, то ни одна из клавиш не нажата, в противном случае код содержит информацию о нажатых клавишах. Стоит заметить, что считанный код содержит не только номер замкнутого контакта, но и информацию о нажатии нескольких кнопок одновременно, поэтому лучше хранить в памяти контроллера непосредственно считанный код, а не готовый номер кнопки. Для хранения считанного кода следует ввести специальный алгоритм и переменные.

Ниже показан пример программы в которой при нажатии определенной клавиши ее значение высвечивается на семисегментном индикаторе. Микроконтроллер Atmega8 работает от внутреннего генератора частотой 8MHz.

/*** Подключение матричной клавиатуры к микроконтроллерам AVR ***/ #include #include // Массив значений для порта вывода unsigned char key_tab = {0b11111110, 0b11111101, 0b11111011, 0b11110111}; // Функция опроса клавиатуры unsigned char scan_key(void) { unsigned char key_value = 0; unsigned char i; for(i = 0;i < 4;i++) { PORTB = key_tab[i]; // выводим лог. 0 в порт вывода _delay_us(10); switch (PINB & 0xF0) { case 0b11100000: key_value = 1 + i * 3; return (key_value); case 0b11010000: key_value = 2 + i * 3; return (key_value); case 0b10110000: key_value = 3 + i * 3; return (key_value); default: break; } } return (key_value); } int main(void) { // массив цифр для индикатора unsigned char num = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F}; DDRB |= (1 << PB3)|(1 << PB2)|(1 << PB1)|(1 << PB0); // Порт вывода DDRB &= ~(1 << PB7)|(1 << PB6)|(1 << PB5)|(1 << PB4); // Порт ввода PORTB = 0xF0; // Устанавливаем лог. 1 в порт ввода DDRD = 0xFF; // Выход на индикатор PORTD = 0x00; _delay_ms(10); while(1) { // Выводим значение нажатой кнопки на индикатор if(scan_key()==1) PORTD = num; if(scan_key()==2) PORTD = num; if(scan_key()==3) PORTD = num; if(scan_key()==4) PORTD = num; if(scan_key()==5) PORTD = num; if(scan_key()==6) PORTD = num; if(scan_key()==7) PORTD = num; if(scan_key()==8) PORTD = num; if(scan_key()==9) PORTD = num; if(scan_key()==11) PORTD = num; } }

Архив для статьи "Подключение матричной клавиатуры к микроконтроллерам AVR"
Описание: Проект AVRStudio и Proteus
Размер файла: 37.33 KB Количество загрузок: 1 905