Прообраз калькулятора леонарда да винчи. Механический период Что будем делать с полученным материалом

Компью́тер (англ. computer - «вычислитель»), ЭВМ (электронная вычислительная машина) - машина для проведения вычислений, а также приёма, переработки, хранения и выдачи информации по заранее определённому алгоритму (компьютерной программе ).

На заре эры компьютеров считалось, что основная функция компьютера - вычисление. Однако в настоящее время полагают, что основная их функция - управление.

История создания средств цифровой вычислительной техники уходит в глубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

В дневниках гениального итальянца Леонардо да Винчи (1452-1519) уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском суммирующей вычислительной машины на зубчатых колесах, способной складывать 13-разрядные десятичные числа. Специалисты известной американской фирмы IBM, 1969 году, воспроизвели машину в металле и убедились в полной состоятельности идеи ученого.

В те далекие годы гениальный ученый был, вероятно, единственным на Земле человеком, который понял необходимость создания устройств для облегчения труда при выполнении вычислений.

1623 г. Через сто с лишним лет после смерти Леонардо да Винчи нашелся другой европеец – немецкий ученый Вильгельм Шиккард (1592-1636) , не читавший, естественно, дневников великого итальянца, – который предложил свое решение этой задачи. Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной в основном с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме на его имя, он приводит рисунок машины и рассказывает, как она устроена. К сожалению, данных о дальнейшей судьбе машины история не сохранила. По-видимому, ранняя смерть от чумы, охватившей Европу, помешала ученому выполнить его замысел.

Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время. Современникам они были неизвестны.

В 1641-1642 гг . девятнадцатилетний Блез Паскаль (1623-1662) , тогда еще мало кому известный французский ученый, создает действующую суммирующую машину ("паскалину").

Вначале он сооружал ее с одной единственной целью – помочь отцу в расчетах, выполняемых при сборе налогов. В последующие четыре года им были созданы более совершенные образцы машины. Они строились на основе зубчатых колес, могли производить суммирование и вычитание десятичных чисел. Было создано примерно 50 образцов машин, Б. Паскаль получил королевскую привилегию на их производство, но практического применения "паскалины" не получили, хотя о них много говорилось и писалось.

В 1673 г. другой великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646-1716) , создает счетную машину (арифметический прибор, по словам Лейбница) для сложения и умножения двенадцатиразрядных десятичных чисел. К зубчатым колесам он добавил ступенчатый валик, позволяющий осуществлять умножение и деление.

"...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", – писал В. Лейбниц одному из своих друзей. О машине Лейбница было известно в большинстве стран Европы.

Заслуги В. Лейбница, однако, не ограничиваются созданием "арифметического прибора". Начиная со студенческих лет и до конца жизни он занимался исследованием свойств двоичной системы счисления , ставшей в дальнейшем основной при создании компьютеров. Он придавал ей некий мистический смысл и считал, что на ее базе можно создать универсальный язык для объяснения явлений мира и использования во всех науках, в том числе в философии.

В 1799 г. во Франции Жозеф Мари Жакард (1752-1834) изобрел ткацкий станок, в котором для задания узора на ткани использовались перфокарты. Необходимые для этого исходные данные записывались в виде пробивок в соответствующих местах перфокарты. Так появилось первое примитивное устройство для запоминания и ввода программной (в данном случае управляющей ткацким процессом) информации.

1836-1848 г.г. Завершающий шаг в эволюции цифровых вычислительных устройств механического типа сделал английский ученый Чарльз Беббидж (1791-1871) . Аналитическая машина, проект которой он разработал, явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ, пять основных устройств: арифметическое, памяти, управления, ввода, вывода. Программа выполнения вычислений записывалась на перфокартах (пробивками), на них же записывались исходные данные и результаты вычислений.

Главной особенностью конструкции этой машины является программный принцип работы.

Принцип программы, хранимой в памяти компьютера, считается важнейшей идеей современной компьютерной архитектуры. Суть идеи заключается в том, что:

Программа вычислений вводится в память ЭВМ и хранится в ней наравне с исходными числами;

Команды, составляющие программу, представлены в числовом коде по форме ничем не отличающемся от чисел.

Программы вычислений на машине Беббиджа, составленные дочерью Байрона Адой Августой Лавлейс (1815-1852), поразительно схожи с программами, составленными впоследствии для первых ЭВМ. Замечательную женщину назвали первым программистом мира.

Несмотря на все старания Ч. Беббиджа и А. Лавлейс, машину построить не удалось... Современники, не видя конкретного результата, разочаровались в работе ученого. Он опередил свое время.

Непонятым оказался еще один выдающийся англичанин, живший в те же годы, – Джордж Буль (1815-1864). Разработанная им алгебра логики (алгебра Буля) нашла применение лишь в следующем веке, когда понадобился математический аппарат для проектирования схем ЭВМ, использующих двоичную систему счисления. "Соединил" математическую логику с двоичной системой счисления и электрическими цепями американский ученый Клод Шеннон в своей знаменитой диссертации (1936 г.).

Через 63 года после смерти Ч. Беббиджа нашелся "некто", взявший на себя задачу создать машину, подобную по принципу действия той, которой посвятил жизнь Ч. Беббидж. Им оказался немецкий студент Конрад Цузе (1910-1985). Работу по созданию машины он начал в 1934 г., за год до получения инженерного диплома. Конрад ничего не знал ни о машине Беббиджа, ни о работах Лейбница, ни об алгебре Буля, тем не менее, он оказался достойным наследником В. Лейбница и Дж. Буля, поскольку вернул к жизни уже забытую двоичную систему исчисления, а при расчете схем использовал нечто подобное булевой алгебре. В 1937г. машина Z1 (что означало "Цузе 1") была готова и заработала! Она была, подобно машине Беббиджа, чисто механической.

К. Цузе установил несколько вех в истории развития компьютеров: первым в мире использовал при построении вычислительной машины двоичную систему исчисления (1937 г.), создал первую в мире релейную вычислительную машину с программным управлением (1941 г.) и цифровую специализированную управляющую вычислительную машину (1943 г.).

Эти воистину блестящие достижения, однако, существенного влияния на развитие вычислительной техники в мире не оказали... Публикаций о них и какой-либо рекламы из-за секретности работ не было, и поэтому о них стало известно лишь спустя несколько лет после завершения Второй мировой войны.

По-другому развивались события в США. В 1944 г. ученый Гарвардского университета Говард Айкен (1900-1973) создает первую в США (тогда считалось первую в мире!) релейно-механическую цифровую вычислительную машину МАРК-1. В машине использовалась десятичная система счисления. Замечательным качеством машины была ее надежность. Установленная в Гарвардском университете, она проработала там 16 лет!

Вслед за МАРК-1 ученый создает еще три машины (МАРК-2, МАРК-3 и МАРК-4) – тоже с использованием реле, а не электронных ламп, объясняя это ненадежностью последних.

В отличие от работ Цузе, которые велись с соблюдением секретности, разработка МАРК1 проводилась открыто, и о создании необычной по тем временам машины быстро узнали во многих странах. Шутка ли, за день машина выполняла вычисления, на которые ранее тратилось полгода! Дочь К. Цузе, работавшая в военной разведке и находившаяся в то время в Норвергии, прислала отцу вырезку из газеты, сообщающую о грандиозном достижении американского ученого.

К. Цузе мог торжествовать. Он во многом опередил появившегося соперника. Позднее он направит ему письмо и скажет об этом.

В начале 1946 г. начала считать реальные задачи первая ламповая ЭВМ «ЭНИАК» (ENIAC), созданная под руководством физика Джона Мочли (1907-1986) при Пенсильванском университете. По размерам она была более впечатляющей, чем МАРК-1: 26 м в длину, 6 м в высоту, вес 35 тонн. Но поражали не размеры, а производительность – она в 1000 раз превышала производительность МАРК-1! Таков был результат использования электронных ламп!

В 1945 г., когда завершались работы по созданию ЭНИАК, и его создатели уже разрабатывали новый электронный цифровой компьютер ЭДВАК, в котором намеривались размещать программы в оперативной памяти, чтобы устранить основной недостаток ЭНИАКа – сложность ввода программ вычислений, к ним в качестве консультанта был направлен выдающийся математик, участник Матхеттенского проекта по созданию атомной бомбы Джон фон Нейман (1903-1957). В 1946 г. Нейманом, Голдстайном и Берксом (все трое работали в Принстонском институте перспективных исследований) был составлен отчет, который содержал развернутое и детальное описание принципов построения цифровых электронных вычислительных машин, которых и придерживаются до сих пор.

В ХХІ веке человечество находится в водовороте огромного количества цифр: счета, зарплаты, налоги, дивиденды, кредиты и т.д. Неизбежным является и то, что мир без такого простого, казалось бы, вычислительного прибора, как калькулятор, двигался бы намного медленнее. Ведь, сколько нужных операций мы производим с помощью этого предмета, который был изобретен несколькими столетиями ранее.

Прообраз калькулятора Леонардо

Зимой 1967 американские ученые, работая над одним из проектов на базе национальной Библиотеки Испании, сделали удивительное открытие. Исследователи обнаружили две потерянные работы да Винчи, которые сейчас являются неотъемлемыми составляющими «Мадридского Кодекса». В этом артефакте находятся чертежи механизма, занимающегося счетными операциями, сделанного Леонардо в 1492 году.

Прообраз калькулятора базировался на основаниях с парой зазубренных колес: с одного бока – колесо большого размера, с другого – маленького. Исходя из оставленных чертежей да Винчи, можно понять, что основания были расположены таким образом, что большое колесо одной детали было сцеплено с маленьким колесом другой детали, а сами стержни были через один перевернуты. Механизм приводила в работу цепная реакция: первый стержень, делая десять оборотов, заставлял сделать один оборот второго стержня, соответственно десять оборотов третьего – к одному обороту четвертого. Всего в машине было 13 деталей, которые двигались, благодаря специальным грузам.

Считается, что Леонардо да Винчи не удалось при жизни осуществить этот проект.

Роберто Гуателли и Леонардо да Винчи

Роберто Гуателли был известным экспертом по биографии, творчеству и изобретениям Леонардо да Винчи. Начиная с 1951 года, совместно с организацией IBM он занимался воспроизведением великих работ Леонардо, изучая оставленные им чертежи и эскизы. Проводя исследования с работами по вычислительной машине в «Мадридском кодексе», Гуателли обнаружил, что есть сходства с эскизами в «Атлантическом Кодексе» - еще одном масштабном труде изобретателя.

На основании уже двух изображений в конце 60-х Роберто Гуателли воссоздал образец вычислительной машины. Аппарат работал по принципу десять к одному на каждой из 13 деталей. После того, как первая ручка делала полное вращение, колесико единиц начинало двигаться, и появлялось число от 0 до 9. После того, как десятое вращение первого рычага завершалось, механизм единиц повторял это же действие и возвращался на нулевую отметку, которую передвигал десятичный механизм на единицу. Соответственно, каждое следующее колесо отвечало за обозначение сотни, тысячи и т.д.

Гуателли внес кое-какие корректировки в чертеж Леонардо, с помощью которых перед зрителем открывалась более полная и детализированная картина происходящего.

Но уже после года существования репродукции вычислительной машины, возникли дискуссии касательно точного воспроизведения механизма. Поэтому для установления оригинальности данного изобретения была проведена группа академических исследований. Существовала гипотеза о том, что на чертежах Леонардо изображено устройство,занимающиеся проведением пропорций, а не вычислительная машина. Также существовало мнение, что в аппарате вращение первого основания приводило к десяти оборотам второго, ста оборотам третьего и 10 в 13-й степени вращениям последнего. Оппоненты полагали, что этот механизм не мог функционировать из-за слишком большой силы трения.

Компания IBM, не смотря на разногласия среди исследователей, решила убрать предмет дискуссий из коллекции.

Итак, первый прообраз калькулятора, не только смог принять материальную оболочку спустя несколько столетий, но и стал предметом полемик в научной среде.

Устройство Леонардо да Винчи

Своего рода модификацию абака предложил Леонардо да Винчи (1452-1519) в конце XV - начале XVI века. Он создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Чертежи данного устройства были найдены среди двухтомного собрания Леонардо по механике, известного как "Codex Madrid". Это устройство что-то вроде счетной машинки в основе которой находятся стержни, с одной стороны меньшее с другой большее, все стержни (всего 13) должны были располагаться таким образом, чтобы меньшее на одном стержне касалось большего на другом. Десять оборотов первого колеса должны были приводить к одному полному обороту второго, 10 второго к одному полному третьего и т. д.

ЛЕОНАРДО ДА ВИНЧИ (Leonardo da Vinci) (15 апреля 1452, Винчи близ Флоренции - 2 мая 1519, замок Клу, близ Амбуаза, Турень, Франция), итальянский живописец, скульптор, архитектор, ученый, инженер.

Сочетая разработку новых средств художественного языка с теоретическими обобщениями, Леонардо да Винчи создал образ человека, отвечающий гуманистическим идеалам Высокого Возрождения. В росписи "Тайная вечеря " (1495-1497, в трапезной монастыря Санта-Мария делле Грацие в Милане) высокое этическое содержание выражено в строгих закономерностях композиции, ясной системе жестов и мимики персонажей. Гуманистический идеал женской красоты воплощен в портрете Моны Лизы ("Джоконда", около 1503). Многочисленные открытия, проекты, экспериментальные исследования в области математики, естественных наук, механики. Отстаивал решающее значение опыта в познании природы (записные книжки и рукописи, около 7 тысяч листов).


Леонардо родился в семье богатого нотариуса. Он сложился как мастер, обучаясь у Андреа дель Верроккьо в 1467-1472 годах. Методы работы во флорентийской мастерской того времени, где труд художника был тесно сопряжен с техническими экспериментами, а также знакомство с астрономом П. Тосканелли способствовали зарождению научных интересов юного Леонардо. В ранних произведениях (голова ангела в "Крещении" Верроккьо, после 1470, "Благовещение", около 1474, оба в Уффици, "Мадонна Бенуа", около 1478, Эрмитаж) обогащает традиции живописи кватроченто, подчеркивая плавную объемность форм мягкой светотенью, оживляя лица тонкой, едва уловимой улыбкой.

В "Поклонении волхвов" (1481-82, не закончена; подмалевок - в Уффици) превращает религиозный образ в зеркало разнообразных человеческих эмоций, разрабатывая новаторские методы рисунка. Фиксируя результаты бесчисленных наблюдений в набросках, эскизах и натурных штудиях (итальянский карандаш, серебряный карандаш, сангина, перо и другие техники), Леонардо добивается редкой остроты в передаче мимики лица (прибегая порой к гротеску и карикатуре), а строение и движения человеческого тела приводит в идеальное соответствие с драматургией композиции.

На службе у правителя Милана Лодовико Моро (с 1481) Леонардо выступает в роли военного инженера, гидротехника, организатора придворных празднеств. Свыше 10 лет он работает над монументом Франческо Сфорца, отца Лодовико Моро; исполненная пластической мощи глиняная модель памятника в натуральную величину не сохранилась (разрушена при взятии Милана французами в 1500) и известна лишь по подготовительным наброскам.

На этот период приходится творческий расцвет Леонардо-живописца. В "Мадонне в скалах" (1483-94, Лувр; второй вариант - 1487-1511, Национальная галерея, Лондон) излюбленная мастером тончайшая светотень ("сфумато") предстает новым ореолом, который идет на смену средневековым нимбам: это в равной мере и божественно-человеческое, и природное таинство, где скалистый грот, отражая геологические наблюдения Леонардо, играет не меньшую драматическую роль, чем фигуры святых на переднем плане.

"Тайная вечеря"

В трапезной монастыря Санта-Мария делле Грацие Леонардо создает роспись "Тайная вечеря" (1495-97; из-за рискованного эксперимента, на который пошел мастер, применив для фрески масло в смеси с темперой, работа дошла до нас в весьма поврежденном виде). Высокое религиозно-этическое содержание образа, где представлена бурная, разноречивая реакция учеников Христа на его слова о грядущем предательстве, выражено в четких математических закономерностях композиции, властно подчиняющей себе не только нарисованное, но и реальное архитектурное пространство. Ясная сценическая логика мимики и жестов, а также волнующе-парадоксальное, как всегда у Леонардо, сочетание строгой рациональности с неизъяснимой тайной сделали "Тайную вечерю" одним из самых значительных произведений в истории мирового искусства.

Занимаясь также архитектурой, Леонардо разрабатывает различные варианты "идеального города" и центрально-купольного храма. Последующие годы мастер проводит в непрестанных переездах (Флоренция - 1500-02, 1503-06, 1507; Мантуя и Венеция - 1500; Милан - 1506, 1507-13; Рим - 1513-16). С 1517 живет во Франции, куда был приглашен королем Франциском I.


"Битва при Ангьяри". Джоконда (Портрет Моны Лизы)

Во Флоренции Леонардо работает над росписью в Палаццо Веккьо ("Битва при Ангьяри", 1503-1506; не закончена и не сохранилась, известна по копиям с картона, а также по недавно обнаруженному эскизу - частное собрание, Япония), которая стоит у истоков батального жанра в искусстве нового времени; смертельная ярость войны воплощена тут в исступленной схватке всадников.

В наиболее известной картине Леонардо, портрете Моны Лизы (так называемой "Джоконды", около 1503, Лувр) образ богатой горожанки предстает таинственным олицетворением природы как таковой, не теряя при этом чисто женского лукавства; внутреннюю значительность композиции придает космически-величавый и в то же время тревожно-отчужденный пейзаж, тающий в холодной дымке.

Поздние картины

К поздним произведениям Леонардо принадлежат: проекты памятника маршалу Тривульцио (1508-1512), роспись "Святая Анна с Марией и младенцем Христом" (около 1500-1507, Лувр). В последней как бы подводится итог его поискам в области свето-воздушной перспективы, тонального колорита (с преобладанием прохладных, зеленоватых оттенков) и гармонической пирамидальной композиции; вместе с тем это гармония над бездной, поскольку группа святых персонажей, спаянных семейной близостью, представлена на краю пропасти. Последняя картина Леонардо, "Святой Иоанн Креститель" (около 1515-1517, там же) полна эротической двусмысленности: юный Предтеча выглядит тут не как святой аскет, но как полный чувственной прелести искуситель. В серии рисунков с изображением вселенской катастрофы (цикл с "Потопом", итальянский карандаш, перо, около 1514-1516, Королевская библиотека, Виндзор) раздумья о бренности и ничтожестве человека перед могуществом стихий сочетаются с рационалистическими, предвосхищающими "вихревую " космологию Р. Декарта представлениями о цикличности природных процессов.

"Трактат о живописи"

Важнейшим источником для изучения воззрений Леонардо да Винчи служат его записные книжки и рукописи (около 7 тысяч листов), написанные на разговорном итальянском языке . Сам мастер не оставил систематического изложения своих мыслей. "Трактат о живописи", подготовленный после смерти Леонардо его учеником Ф. Мельци и оказавший огромное влияние на теорию искусства, состоит из отрывков, во многом произвольно извлеченных из контекста его записок. Для самого Леонардо искусство и наука были связаны неразрывно. Отдавая в "споре искусств" пальму первенства живописи как наиболее интеллектуальному, по его убеждениям, виду творчества, мастер понимал ее как универсальный язык (подобный математике в сфере наук), который воплощает все многообразие мироздания посредством пропорций, перспективы и светотени. "Живопись, - пишет Леонардо, - наука и законная дочь природы..., родственница Бога". Изучая природу, совершенный художник-естествоиспытатель тем самым познает "божественный ум", скрытый под внешним обликом натуры. Вовлекаясь в творческое соревнование с этим божественно-разумным началом, художник тем самым утверждает свое подобие верховному Творцу. Поскольку он "имеет сначала в душе, а затем в руках" "все, что существует во вселенной", он тоже есть "некий бог".

Леонардо - ученый. Технические проекты

Как ученый и инженер Леонардо да Винчи обогатил проницательными наблюдениями и догадками почти все области знания того времени, рассматривая свои заметки и рисунки как наброски к гигантской натурфилософской энциклопедии. Он был ярким представителем нового, основанного на эксперименте естествознания. Особое внимание Леонардо уделял механике, называя ее "раем математических наук" и видя в ней ключ к тайнам мироздания; он попытался определить коэффициенты трения скольжения, изучал сопротивление материалов, увлеченно занимался гидравликой. Многочисленные гидротехнические эксперименты получили выражение в новаторских проектах каналов и ирригационных систем. Страсть к моделированию приводила Леонардо к поразительным техническим предвидениям, намного опережавшим эпоху: таковы наброски проектов металлургических печей и прокатных станов, ткацких станков, печатных, деревообрабатывающих и прочих машин, подводной лодки и танка, а также разработанные после тщательного изучения полета птиц конструкции летальных аппаратов и парашюта.

Собранные Леонардо наблюдения над влиянием прозрачных и полупрозрачных тел на окраску предметов, отраженные в его живописи, привели к утверждению в искусстве принципов воздушной перспективы. Универсальность оптических законов была связана для него с представлением об однородности Вселенной. Он был близок к созданию гелиоцентрической системы, считая Землю "точкой в мироздании". Изучал устройство человеческого глаза, высказав догадки о природе бинокулярного зрения.

Анатомия, ботаника, палеонтология

В анатомических исследованиях, обобщив результаты вскрытий трупов, в детализированных рисунках заложил основы современной научной иллюстрации. Изучая функции органов, рассматривал организм как образец "природной механики". Впервые описал ряд костей и нервов, особое внимание уделял проблемам эмбриологии и сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Утвердив ботанику как самостоятельную дисциплину, дал классические описания листорасположения, гелио - и геотропизма, корневого давления и движения соков растений. Явился одним из основоположников палеонтологии, считая, что окаменелости, находимые на вершинах гор, опровергают представления о "всемирном потопе".

Явив собою идеал ренессансного "универсального человека", Леонардо да Винчи осмыслялся в последующей традиции как личность, наиболее ярко очертившая диапазон творческих исканий эпохи. В русской литературе портрет Леонардо создан в романе "Воскрешенные боги" (1899-1900)

Потребность в автоматическом вычислении возникла в средние века в связи с резко возросшими в этот период торговыми операциями и океаническим судоходством. Торговля требовала больших денежных расчетов, а судоходство - надежных навигационных таблиц.

Ученые тех времен наблюдали за Луной и составляли громадные таблицы, где фиксировали изменение ее положений, которые использовались для проверки правильности предлагаемых формул движения естественного спутника Земли. Такая проверка опиралась на громадное число арифметических вычислений, требовавших от исполнителя терпения и аккуратности. Для облегчения и ускорения такой работы стали разрабатывать вычислительные устройства. Так появились различные механизмы - первые суммирующие машины и арифмометры.

Под механическим вычислительным устройством понимается устройство, построенное на механических элементах и обеспечивающее автоматическую передачу из низшего разряда в высший.

Механические цифровые вычислительные устройства представляют собой технические объекты значительно более высокого уровня сложности по сравнению с предшествующими домеханическими средствами. Предпосылками их создания считаются научно-технический прогресс и социальные потребности, а основной технической предпосылкой их создания было развитие механики как на этапе, предшествовавшем созданию точной механики, так и на этапе ее формирования и развития.

Считается, что механический этап продолжается от изобретения суммирующей машины Паскаля (1642г) до создания электромеханического табулятора Голлерита (1887г). Классическим инструментом механического типа является арифмометр, изобретенный Лейбницем, ручной привод которого позднее был заменен на электрический.

В выделяют промежуточное положение между механическими и домеханическими устройствами, которые используют механическую конструкцию (например, зубчатые передачи), но не обеспечивают передачу десятков. Названы эти устройства квазимеханическими, к ним относятся машины Леонардо да Винчи и Вильгельма Шиккарда.

Машина Леонардо да Винчи

Уже в наше время были обнаружены чертежи и описание 13-разрядного суммирующего устройства, принадлежащие итальянскому ученому Леонардо да Винчи (1452-1519).

Основу машины по описанию составляют стержни, на которые крепятся зубчатые колеса (рис.3). Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - к одному обороту третьего и т.д.

В 1969 г. по чертежам Леонардо да Винчи американская фирма IBM по производству компьютеров в целях рекламы построила работоспособную машину. Специалисты воспроизвели машину в металле и убедились в полной состоятельности идеи ученого.

Суммирующую машину Леонардо да Винчи можно считать изначальной вехой в истории цифровой вычислительной техники. Это был первый цифровой сумматор, прообраз будущего электронного сумматора - важнейшего элемента современных ЭВМ, пока еще механический, очень примитивный (с ручным управлением).