Щелевая антенна диаграмма. Приём вкр для публикации в эбс спбгэту "лэти". «Карты и схемы в фонде Президентской библиотеки»

  • Перевод

Статья на перевод предложена alessandro893 . Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.


Слева – изотропная антенна, справа – направленная

Дипольная антенна




Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности

Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.

Антенна в виде несимметричного вибратора (монопольная)


Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности


Антенна "волновой канал ", антенна Яги-Уда, антенна Яги


Диаграмма направленности


Уголковая антенна


Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности


Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов


Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности


Спиральная антенна


Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности


Ромбическая антенна


Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности


Двумерная антенная решётка


Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов - 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности


Рупорная антенна


Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности


Параболическая антенна


Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности


Антенна Кассегрена


Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности

Антенна Грегори



Слева – антенна Грегори, справа - Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.

Офсетная (асимметричная) антенна


Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной

Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.

Щелевая антенна


Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности


Пассивная фазированная антенная решётка (ПФАР)



Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой


Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель


Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор


Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот


Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка


Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

Теги: Добавить метки

образуется короткозамкнутый четвертьволновый отрезок двухпроводной линии. Обладая большим входным сопротивлением, он не позволяет токам ответвляться на внешнюю оболочку фидера. Поскольку сопротивление между точками "а" и "б" велико, то плечи вибратора на частоте излучения электрически развязаны, несмотря на гальваническую связь между ними. Края щелей обычно делают расширяющимися, чтобы обеспечивалось согласование волнового сопротивления фидера с входным сопротивлением вибратора.

λ /2

U-колено (рис. 3.20). Это

изогнутый

коаксиальный фидер

длиной λ /2,

к внутреннему про-

воду которого подсоединяются

плечи вибратора. Внешняя обо-

лочка фидера для питания плеч не

используется и заземляется. На-

пряжения и токи в точках "а" и

λ /2

"б" равны по величине и проти-

воположны по фазе, что и требу-

ется для симмет-

ричного питания антенны. Кроме

симметрирования

U-колено уменьшает

входное сопротивление вибратора в 4 раза. В связи с этим его удобно применять для питания петлевого вибратора Пистелькорса, входное сопротивление которого составляет 300 Ом, стандартным фидером с ρ ф =75 Ом.

3 . 2 . Щелевые антенны

3.2.1. Типы щелевых антенн. Особенности их конструкции

Щелевая антенна представляет собой узкую щель, прорезанную в металлической поверхности экрана, оболочке резонатора или волновода. Ширина щели d<<λ , длина обычно близка к половине волны. Щели прорезаются так, чтобы они пересекали линии поверхностного тока, текущего по внутренней стенке волновода или резонатора (рис. 3.21). Возможны различные положения щелей (см. рис. 3.21): поперечная (1), продольная (2), наклонная (3), и разнообразные их формы: прямолинейные, уголковые, гантельные, крестообразные (рис. 3.22).

Высокочастотный поверхностный ток, пересекая щель, индуцирует по ее краям переменные заряды (напряжение), а на обратной (наружной) сторо-

не поверхности возбуждаются токи. Электрическое поле в щели и токи на поверхности являются источниками излучения и формируют в пространстве

электромагнитное поле.

Простейшими

являются

ных размеров со щелью,

резонаторно-щелевые

и волноводно-щелевые

Возбуждение

луволновых щелей в эк-

осуществляется в

метровом

диапазоне

помощью симметричной

двухпроводной линии, а

а в дециметровом – с помощью коаксиальной линии передачи. При этом внешний проводник присоединяется к одной кромке щели, а внутренний – к другой. Для согласования линии передачи с антенной точку питания смещают от середины щели к ее краю. Такая антенна может излучать в обе полусферы. В сантиметровом диапазоне и прилегающей к нему части дециметрового диапазона применяют резонаторные и волноводно-щелевые антенны (см. рис. 3.21, 3.22). В коаксиальных волноводах возбуждаются только поперечные или наклонные щели, в прямоугольных возможны различные варианты размещения щелей (см. рис. 3.21).

Ширина щели оказывает влияние на активную и реактивную части входного сопротивления. Обе составляющие возрастают с увеличением ширины щели. Поэтому для компенсации Х вх надо уменьшать длину щели (укорачивать ее). Рост R вх приводит к расширению полосы пропускания щелевой антенны. Обычно ширина щели d выбирается в диапазоне (0,03…0,15)λ . Для дополнительного расширения полосы пропускания применяют гантельные щели и специальные конструкции возбуждающих устройств.

Помимо диапазонности на выбор ширины щели влияет условие обеспечения электрической прочности. Концентрация электрических зарядов на кромках щели приводит к местным перенапряжениям и возникновению элек-

где E щ max - напряженность электрического поля в пучности. Принимая E щ max = E пр (напряженность пробоя, для сухого воздуха E пр =30кВ/м), находим

d min= U щ max/ E пр.

На практике выбирают d ≥ K зап d min , где K зап =2…4 - коэффициент запа-

Щели более сложной формы, чем прямоугольные, можно рассматривать как комбинации простых. Они используются для получения электромагнитных волн с требуемыми поляризационными свойствами. Например, крестообразная щель позволяет получить антенну с эллиптической и круговой поляризацией. Направление вращения зависит от направления смещения щели от оси широкой стенки волновода.

Щелевые антенны отличаются простотой конструкции, высокой надежностью и отсутствием выступающих частей, что позволяет использовать их в летательных аппаратах и наземных антенных системах в качестве самостоятельных антенн, облучателей сложных антенных систем и элементов антенных решеток.

3.2.2. Одиночная щель. Принцип двойственности Пистелькорса

Рассмотрим характеристики и параметры так называемой идеальной щелевой антенны, т.е. одиночной щели, прорезанной в идеально проводящем плоском экране. Расчет поля такой антенны с помощью уравнений электродинамики представляет значительные трудности. Он существенно облегчается, если воспользоваться принципом двойственности, сформулированным Пистелькорсом в 1944 году. Этот принцип основан на известной из теории электромагнитного поля перестановочной двойственности уравнений Максвелла. Для щели эти уравнения имеют вид:

Если экран убрать, а щель заменить идеальным плоским вибратором таких же размеров, как щель (рис. 3.23), и с таким же распределением тока, как распределение напряжения вдоль щели (эквивалентным вибратором, вырезанным из экрана для получения щели), то поле, излучаемое им, также бу-

дет удовлетворять уравнениям Максвелла

rotHr B = iωε 0 EB ,

rotEB = − iωμ 0 H B ,

но уже при других граничных условиях:

на месте экрана - E τ

≠ 0, H τ = 0 ; на вибраторе - E τ B = 0, H τ B ≠ 0 . (3.29)

Сравнивая граничные условия щели (3.27) и эквивалентного вибратора (3.29), можно убедиться, что структуры электрического поля вблизи щели и магнитного поля вблизи вибратора совпадают. Граничные условия для эквивалентного вибратора получаются из граничных условий для щели путем перестановки Е ↔ Н . С учетом вышеизложенного для полного поля во всем пространстве можно записать:

E r щ = C 1 H B , H щ = C 2 E B ,

где С 1 и С 2 – постоянные коэффициенты.

На практике обычно используют полуволновые щели. При этом независимо от способа возбуждения амплитуда электрического поля в щели максимальна в центре и спадает к краям, т.е. соответствует закону распределения тока в полуволновом вибраторе. Для узкой щели (тонкого вибратора) граничные условия, а значит, и постоянные коэффициенты можно выразить че-

рез напряжение в центре щели U 0 и ток в центре вибратора I 0 (см. рис. 3.23):

U 0 , H

Откуда C = 2 U 0 .

Тогда первое выражение в (3.31) перепишется в виде:

E щ =

H B .

Таким образом, принцип двойственности применительно к щелевым антеннам формулируется так: электрическое поле щелевой антенны с точностью до постоянного множителя совпадает с магнитным полем дополнительного вибратора таких же размеров, как щель, и с таким же амплитудным распределением.

Это означает, что ЭМП щели и эквивалентного вибратора отличаются

между собой только поворотом на 90° соответствующих векторов E r щ и E B ,

H r щ и H B .

Применяя принцип двойственности, можно записать для диаграмм направленности:

F щ(θ ) H = F B (θ ) E ;

F щ(θ ) E = F B (θ ) H ,

где F щ (θ ) H , F щ (θ ) E - нормированные ДН щели в плоскостях Н и Е соот-

ветственно; F B (θ ) H , F B (θ ) E - соответствующие нормированные ДН полуволнового вибратора.

При отсчете угла θ от нормали к плоскости щели диаграмма направленности полуволновой щели запишется в соответствии с равенством (3.33) в виде:

cos(π sinθ )

F щ(θ ) H =

F щ (θ )E = 1.y

меры экрана сущест-

форму ДН, и их под-

ректировать

плоскостях.

ротивление щели, так же как и вибратора, носит комплексный характер и зависит от ее размеров (длины 2l и ширины d ). Величины R щ вх и X щ вх подсчитаны для разных значений l /λ и приводятся в виде графиков в справочной и учебной литературе. Реактивная составляющая щели носит емкостной характер. Настройка щели тем не менее производится также ее укорочением. Величина укорочения подсчитывается по формуле:

ln(2λ π d )

Как следует из (3.35), более широкие щели укорачиваются на большую величину.

Входное сопротивление щели связано со входным сопротивлением дополняющего ее вибратора. Эту связь удобнее выражать через комплексную входную проводимость щели:

Z вхв

(60π )2

Таким образом, входная проводимость щели определяется выражени-

(60π )2

где ρ A = 120 ln

− 0,577

Волновое сопротивление щели.

π d

Комплексная входная проводимость полуволновой щели

в закритическом режиме при их распространении между параллельными металлическими пластинами мож­но определить расстояние между выступами; d 0 (рис, 5.12), их длину 1{/и толщину - \ - ., \ ^

На рис. 5.13 и 5.14 показаны примеры, конструктив­ного выполнения волноводно-щелевых нерезонансных



антенн с наклонными щелями на узкой стенке волновода при питании антенны прямоугольным волноводом (рис. 5.13) и с продольными щелями на широкой стенке при питании коаксиальным кабелем (рис. 5.14).

Пример конструктивного выполнения волноводно-ще- левой антенны с электромеханическим качанием луча (со съемной верхней щелевой стенкой) приведен на рис. 5.15. Назначение отдельных элементов антенны указано на том- же рисунке.


На рис. 5.1-6,а показан один из вариантов двумерной волноводно-щелевой антенны [Л 11], состоящей из восьми параллельных алюминиевых волноводов, в каждом из которых прорезано десять гантельных щелей. Гантель­ные щели по сравнению с обычными прямоугольными обладают большей полосой пропускания [ЛО 9]. Особен­ностью антенны является то, что четные и нечетные вол­новоды питаются с разных сторон с помощью делителей мощности и весь раскрыв используется для формирова­ния четырех лучей, схема расположения которых в про­странстве показана пунктиром на рис. 5.16,6, Такие ан­тенны применяются, например * в самол ётных допплеров- ских автономных навигационных устройствах, предназна­ченных для определения скорости и угла сноса само­лета.

Набор из нескольких линейных*волноводно-щелевых антенн, расположенных по образующим конической ча­сти летательного аппарата (рис. 5.17) / может использо­ваться для формирования требуемой формы диаграммы направленности [ЛО 7]..

Для защиты.от атмосферных" осадков и пыли раскрыв волноводно-щелевой антенны должен быть закрыт ди­электрической пластиной или же вся излучающая си­стема должна быть помещена в радиопрозрачиый обте­катель. /у.-"-; ;7 ";;>■-■

5.9. Примерный порядок^ расчета волноводно-щелевых

При разработке или проектировании щелевых антенн исходными данными могут быть:

Ширина ДН в двух главных плоскостях или в одной

20q 5 и уровень боковых лепестков;

Коэффициент направленного действия £) 0 ;

Амплитудное:или амплитудно-фазовое распределе­ние по/ антенне и число излучателей N; диапазон частот

Остановимся на порядке расчета для.следующих двух вариантов:

Вариант 1. Задано амплитудное распределение по раскрыву антенны и число излучателей N.

Вариант 2. Задана ширина диаграммы направленно­сти в одной или двух главных плоскостях и уровень бо­кового излучения.

Вначале выбирается тип волноводно-щелевой антен­ны. Если задано углово"е положение главного максиму­ма ДН 0 ГЛ \И антенна должна обеспечить работу в поло­се частот, выбирают нерезонансную антенну. Если же по заданию на проектирование антенна узкополосная, но должна иметь высокое значение к. п. д. - предпочтитель­нее резонансная антенна.

Вариант 1. При заданном законе изменения ампли­туд по раскрыву антенны первоначально определяется расстояние между излучателями d в выбранном для по­строения антенны волноводе данного диапазона частот: В резонансной антенне с перёменнофазными щелями В нерезонансной антенне величина d может быть выбрана двояким,образом. Если задано положение главного максимума ДН в пространстве 6 № то по фор­муле (5.26) находится необходимая величина rf. Если же угол Эгл не задан, то расстояние между излучателями выбирается d^\"k B /2 и притом так, чтобы на крайних- ча­стотах заданного диапазона не было резонансного возбуждения антенны [формула (5.22)]: Далее расчет ведётся в следующем порядке.

Ц С учетом общей эквивалентной схемы антенны, (см. рис. 5.8,6) рассчитывают эквивалентные нормированные проводимости g n (или сопротивления г п) всех N щелей антенны (см. § 5,4).

2. Зная величину gv или г п / по: формулам табл. 5.1 (§ 5.2) определяют смещение центра щелей относи­тельно середины широкой стенки волновода, или угол их наклона 6 в боковой стенке.

Р 3. Рассчитав проводимость излучения щели в волно­воде (т. е. внешнюю прово димость),f по известному зна­чению мощности на входе, (в случае передающей антен­ны) определяют напряжение в пучности щели U m [фор­мула (5.3)], а следовательно, и ширину щели di [форму­ла (5.4)].

4. При известном местоположении щелей на стенке волновода и их ширине по данным § 5.2 находят резо­нансную длину щелей в волноводе.

5. Вычисляют ДН антенны (см. § 5.7) ^ ее к. н. д. и к. у.

Вариант 2. Сначала находят расстояние между излу­чателями аналогично первому варианту расчета. Затем выбирают амплитудное распределение по антенне, обес-

10* 147 начинающее ДН с заданным уровнем боковых лепестков. Далее по известному теперь амплитудному распределе­нию находят длину антенны (соответственно и число излучателей), обеспечивающую требуемую ширину ДН на уровне 0,5 мощности (формулы табл. 5.2 § 5.7). Даль­нейший расчет совпадает с пп. 1-5 предыдущего вариан­та расчета.

Кроме электрического расчета собственно антенны рассчитывают питающую линию и возбудитель, подби­рают необходимый тип вращающегося сочленения, когда это требуется по заданию на проектирование, и опреде­ляют его основные характеристики.

Литература

Г. К ю н PV Микроволновые антенны. ТТёр. с; нем. под ред. М. П. Долуханова. Изд-во «Судостроение», 1967.

"2. Пиет о л ь к ор с А. А. Общая теория дифракционных антенн. ЖТФ, 1944, т. XIV, № 12, ЖТФ, 1946, т. XVI, (Nb 1.

3. «Пособие по курсовому проектированию антенн». ВЗЭЙС, 1967.

4. Я ц у к Л. П., С м и р н о в а Н. ! В. Внутренние проводимости нерезонансных щелей в прямоугольном волноводе. «Известия вузов», Радиотехника, 1967, т. X, 4.

"5. В ещ"Н и к о в а И. Е., Е в ет р о и о в Г. А. Теория согласо­ванных щелевых излучателей. «Радиотехника и электроника», 1965, т. X, № Щ

6. Е в с т р. о и о в Г. А., Ц а р а п к и н С. А, Исследование волно- водно-щелевых антенн: с идентичными резонансными излучателями. «Радиотехника и электроника», 1965, т. X, № 9.

7. Е в ст р о п о в Г. А., Ц а р a ilk и н С. "А: Расчет волново"дно- щелевых антенн с учетом взаимодействия излучателей по основной волне. «Радиотехника и- электроника», 1966, т. XI, № 5.

8. Ш у б а р и н Ю. В. Антенны сверхвысоких частот. Изд-во Харьковского университета, 1960.

9. «Сканирующие антенные системы СВЧ», т. I. Пер. с англ., под ред. Г. Т. Маркова и А. Ф. Чаплина. Изд-во «Советское радио», 1966.

10. Ш й р м а н Я. Д. Радиовблноводы и объемные резонаторы. Связьиздат, 1959.

11. Р е з ник о в Г. Б. Самолетные антенны. Изд-во «Советское радио» , 1962.

РУПОРНЫЕ АНТЕННЫ Шй

6.1. Основные характеристики рупорных антенн

Волноводно-рупорные антенны являются простейши­ми антеннами сантиметрового диапазона волн.

Они могут формировать диаграммы направленности шириной от 100- 140° (при раскрыве специальной фор­мы) до 10щ520° в пирамидальных рупорах. Возможность дальнейшего сужения диаграммы рупора ограничивается необходимостью резкого увеличения его длины.

Волноводно-рупорные антенны являются широкопо­лосными устройствами и обеспечивают примерно полу­торное перекрытие по диапазону. Возможность измене­ния рабочей частоты в еще больших пределах ограничи­вается возбуждением и распространением высших типов волн в питающих волноводах. Коэффициент полез­ного действия рупора высокий (около 100%). Рупорные антенны,просты в изготовлении. Сравнительно неболь­шое усложнение (включение в волноводный тракт фази­рующей секции) обеспечивает создание поля с круговой поляризацией.

Недостатками рупорных антенн являются: а) гро­моздкость конструкции, огр а н ичив а ю щ а я возможность получения узких диаграмм направленности; б) трудно­сти в регулировании амплитудно-фазового распределения поля в раскрыве, которые ограничивают возможность снижения уровня боковых лепестков и создания диа­грамм направленности специальной формы.

Рупорные излучатели могут применяться как само­стоятельные антенны или, так же каж и открытые концы волноводов, в качестве элементов более сложных антен­ных устройств. Как самостоятельные антенны рупоры используются в радиорелейных линиях, в станциях ме­теослужбы, весьма широко в радиоизмерительной аппа­ратуре, а также в некоторых станциях специального на­значения. Широко - используются небольшие рупоры. и открытые концы волноводов в качестве облучателей

параболических зеркал и линз. Облучатели в виде линей- , ки рупоров или открытых, концов волноводов могут быть использованы для формирования диаграВм направ­ленности специальной формы, управляемых^ диаграмм или, например, при- использовании одного и того же па­раболоида для создания -карандашной и косекансной] диаграмм!® направленности. Четырехрупорный или вось- мирупорный излучатель может применяться при: Моно­импульсном способе пеленгации. С этой же целью могут быть использованы секториальные рупоры с высшими. : типами волн (#ю, Нщ #зо). Для формирования узких диаграмм направленности могут б ы ть и с п 6 л ь з ов а н ы дву­хмерные решетки, с0ста1влен!ные из открытых концов вол­новодов или,небольших рупоров. Возможно;п о строение плоских или выпуклых фазированных решеток.

ПараграфЩ 6.2-6.9 посвящены, рассмотрению мётоди- щ. расчета рупорных излучателей. В параграф ах 6.10- 6.12 изложены некоторые особенности проектирования рупорно-волноводных фазированных решеток.

6.2. Метод расчета

Расчет рупорных антенн основан на результатах их.анализа, т. е. первоначально ориентировочно задаются; " геометрическими размерами антенны, а затем опреде­ляют ее электрические параметры. Если размеры выёрд- ны неудачно, то расчет повторяется снова.

Поле излучения рупорной антенны; как и всех антенн СВЧ, определяется приближенным методом. Сущность приближения; заключается в том, что несмотря на связь между полем внутри и вне рупора, внутреннюю задачу, решающи^ внешней, и полученные из. этого

решения значения поля в плоскости раскрыва рупора используют для решения внешней Задачи [ДО 1, ЛО 13].

Амплитудное распределение поля в раскрыве рупора принимается таким жё, как в питающем его волноводе. Например, . при возбуждении.;, рупора прямоугольным ВОЛНОВОДОМ С волной #10, вдоль оси Х- (проходящей в плоскости Н) распределение амплитуды поля, косину­соида л ьное, а вдоль оси Y (проходящей, в плоскости Е) амплитудное распределение равномерное. В связи с тем, что фронт волны в рупоре не остается плоским," а транс­формируется в цилиндрический в секториальном; рупоре и в сферический в пирамидальном и коническом, то фа­за поля по раскрыйу; меняется по квадратичному за­кону.

Описанные амплитудное и фазовое распределения поля по раскрыву являются приближенными. Некоторое уточнение дает учет отражения от раскрыва хотя бы только основного типа волны. При этом надо иметь в виду, что коэффициент отражения Г уменьшается с увеличением раскрыва.

Диаграмма направленности рупорной антенны по из­вестному полю в раскрыве может рассчитываться мето­дом волновой оптики на основе принципа Гюйгенса и формулы Кирхгофа [ЛО 13, JIO 11, J10 1]. Применение формулы Кирхгофа к электромагнитному полю не является строгим. Рядом авторов были внесены уточне­ния, учитывающие особенности электромагнитного поля антенны. В силу этого в литературе для расчета диа­граммы направленности имеется несколько различных, но похожих друг на друга формул, которые дают близ­кие результаты. Расчетные формулы будут приведены ниже в § 6.5. Имея выражение для диаграммы направ­ленности, можно найти коэффициент направленного дей­ствия антенны^ зависимость ширины диаграммы направ­ленности от размеров раскрыва!и другие характеристи­ки антенны.

6.3. Выбор геометрических размеров рупора и волноводного излучателя

Рупорная антенна (рис; 6.1) состоит из рупора I, волновода и возбуждающего устройства 3

Если генератор, питающий антенну * имеет коаксиаль­ный выход, то возбуждение антенного волновода 2 осу­ществляется чаще всего штырем, р аспол оженным пер - пендикулярно широкой стенке j волновода, возбуждение к штырю подводится коаксиальным кабелем. Если гене­ратор, питающий антенну, имеет вОлноводный выход, то фидерный тракт выполняется обычно в виде прямоуголь- ногб волновода с волной Н 10 . Волноводный фидер непо­средственно переходит в волновод 2, возбуждающий ру­пор. Расчет возбуждающего устройства в виде; не­симметричного штыря будет приведен в следующем параграфе.

Выбор размеров волновода

Выбор размеров поперечного сечения прямоугольного волновода а и b .производится из условия распростране­ния в волноводе только основного типа волны #ю:

Соотношение (6.1) представлено на графике рис. 6.2, ко­торый может быть использован для нахождения разме­ров а. Размер Ь должен удовлетворять условию b

Приведем некоторые соображения по расчету зондо­вого перевода (см. рис. 6.3).

Входное сопротивление штыря в волноводе, так же как несимметричного вибратора в свободном пространст­ве, является в общей случае комплексной величиной. Активная часть входного сопротивления зависит: в ос­новном от длины штыря, реактивная - от длины и тол­щины. В" отличие от свободного пространства входное сопротивление штыря в волновбде зависит от структуры поля в волноводе вблизи штыря.

Расчет; реактивной составляющей входного сопротив­ления дает неточные результаты и проводить его не име­ет смысла. Для обеспечения согласования реактивная составляющая входного сопротивления должна быть равна, нулю. Активную составляющую входного сопро­тивления можно считать равной сопротивлению Излуче­ния штыря в волноводе Она должна; быть равн!

Сопротивление излучения штыря в прямоугольном волноводе в режиме бегущей волньь определяется сле­дующим соотношением:

Щри наличии отраженной волны в прямоугольном; волноводе сопротивление штыря несколько изменяется:-

волновому сопротивл ению фидер а.

реактивных частей проводимостей справа и слева от штыря, а именно:

В приведенных формулах приняты следующие обо­значения: а и ЬЩ- размеры поперечного сечения волно­вода; Х\ - положение штыря на широкой -,стен.кё волно­вода, чаще; всего штырь располагается в середине ши­рокой стенки, т. е. Xi = a/2; Zi.-- расстояние от штыря до закорачивающей стенки волновода; гщ- расстояние от штыря до ближайшего узла напряжения; к. б. в. - ко­эффициент бегущей волны в волноводе; Х^ф- длина вол­ны в волноводе; р в -4 волновое сопротивление волновода

/г д - действующая высота штыря в волно­

воде, геометрическая высота которого /, определяется по формуле

Задаваясь величинами х\ и можно по формулам (6.18), (6.19) и (6.21) найти высоту штыря /, при кото­рой получается требуемое /? В х.

Для полного согласования в конструкциях должны предусматриваться два органа регулировки. Например, можно регулировать высоту штыря / и положение за­корачивающей стенки в волноводе U (см. рис. 6.3) или размеры k и S (см. рис. 6.4,6). В ряде случаев для упро­щения конструкции ограничиваются одной; регулиров­кой и допускают некоторое* рассогласование в питаю­щем коаксиале.

6.5. Расчет коэффициента отражения

Отражение в рупорной антенне возникает в двух сече­ниях: в раскрыве рупора (1\) и в его горловине (Г 2).

Рассмотрим коротко каждый из коэффициентов отраже­ния. Коэффициент отражения от раскрыва Т\ является|ком- гглексной величиной; его модуль и фаза зависят от раз­меров раскрыва. Строгое решение задачи для открытого конца волновода, зажатого _между двумя бесконечными плоскостями, проведенное Вайнштейном Л. А.; позво­ляет установить, что.модуль коэффициента отражения уменьшается с увеличением размеров раскрыва, а фаза приближается к нулю.

Приближенно модуль коэффициента отражения от раскрыва для основного типа" волны может быть опре­делен из соотношения

Постоянная распространения в прямоугольном вол­новоде, г поперечное сечение которого равно раскрыву рупора;/" д*// г: . ? \ ^

Постоянная распространения в круглом волноводе, диаметр которого равен диаметру раскрыва коническо­го рупора.

Коэффициент отражения по длине рупора от раскры­ва к горловине изменяется не только по фазе, но и по амплитуде. При размерах раскрыва в несколько длин

Коэффициент отражения fi от открытого конца пря­моугольного волновода (23X10) мм 2 на волне 3,2 см, из­меренный экспериментально, равен

Рассмотрим коэффициент отражения от горловины ру­пора Г 2 .

При определении коэффициента Г 2 предполагается, что

в рупоре установилась бегущая волна. Задача решается методом сшивания полей >в месте соединения волновода

Выбор размеров рупора

Размеры раскрыва пирамидального или секториаль- ного рупора а р и Ь р (см. рис. 6.1) выбираются по требуе­мой ширине диаграммы направленности в соответствую­щей плоскости или по к. н. д.

Ширина диаграммы направленности связана с раз­мерами раскрыва a v и b v следующими соотношениями:

Теоретическая часть

1. Назначение и особенности волноводно-щелевых антенн

Волноводно-щелевая антенна (ВЩА) относится к классу линейных (плоских) многоэлементных антенн. Излучающими элементами таких антенн являются щели, прорезаемые в стенках волноводов, объемных резонаторов или металлических основаниях полосковых линий. На практике находят применение ВЩА с неподвижной в пространстве диаграммой направленности (ДН), а также ВЩА с механическим, электромеханическим и электрическим сканированием .

К достоинствам ВЩА можно отнести:

Отсутствие выступающих частей, что позволяет совмещать их излучающую поверхность с внешней поверхностью корпуса летательных аппаратов, не внося при этом дополнительного аэродинамического сопротивления;

Сравнительно несложное возбуждающее устройство и простота в эксплуатации.

Основным недостатком ВЩА является ограниченность диапазонных свойств. При изменении частоты в несканирующей ВЩА луч отклоняется от заданного положения в пространстве, что сопровождается изменением ширины ДН и нарушением согласования антенны с питающим фидером.

2. Основные параметры щели в волноводе

Щель, вырезанная в волноводе, будет возбуждаться, если ее широкая сторона пересекает токи, текущие по внутренним стенкам. При построении ВЩА на основе прямоугольного волновода с основной волной Н 10 необходимо учитывать, что в широкой стенке волновода имеются продольные и поперечные составляющие поверхностного тока, а в узкой стенке – только поперечные. Щели могут быть вырезаны в широкой и узкой стенках волновода.

Рассмотрим щель, расположенную на широкой стенке волновода продольно по отношению к осевой (средней) линии широкой стенки (рис.1).

Такая щель возбуждается поперечной составляющей тока, если она смещена относительно средней линии на расстояние х 1 . При х 1 =0 излучение щели отсутствует. Изменяя величину смещения щели х 1 , можно регулировать интенсивность ее излучения.

При возбуждении щели токами, текущими по внутренним стенкам волновода, происходит излучение электромагнитной энергии как во внешнее пространство, так и в волновод. Для анализа работы щели вводят понятия внешней и внутренней проводимостей щели, определяемых внешним и внутренним излучением щели соответственно. Зная величины данных проводимостей, можно определить резонансную частоту щелей разной длины и проследить ее зависимость от расположения на стенке волновода.

Как известно, щель, прорезанная в волноводе, нарушает режим его работы, вызывая отражение энергии: часть ее излучается, остальная проходит дальше по волноводу. Таким образом, можно считать, что щель служит нагрузкой для волновода, на которой рассеивается часть мощности, эквивалентной мощности излучения. Поэтому для упрощения анализа можно заменить волновод эквивалентной двухпроводной линией, в которую включены нагрузки параллельно или последовательно в зависимости от типа щели (продольная щель эквивалентна параллельному включению, поперечная щель – последовательному).


3. Разновидности ВЩА

По принципу, на котором основана работа ВЩА, различают резонансные и нерезонансные волноводно-щелевые антенны.

В резонансных антеннах расстояние между соседними щелями выбирают равным l В (щели, синфазно связанные с полем волновода) или l В /2 (щели, переменно-фазно связанные с полем волновода), где l В – длина волны в волноводе, и на конце волновода устанавливают короткозамыкающий поршень. Таким образом, резонансные антенны являются синфазными и, следовательно, направление их максимального излучения совпадает с нормалью к продольной оси антенны. Синфазное возбуждение продольных щелей, расположенных по разные стороны относительно средней линии, обеспечивается за счет дополнительного фазового сдвига по фазе на 180°, обусловленного противоположными по направлению токами по обеим сторонам осевой линии широкой стенки волновода.

Резонансную антенну можно хорошо согласовать с питающим фидером в достаточно узкой полосе частот. Действительно, так как каждая щель отдельно не согласована с волноводом, то все отраженные от щелей волны складываются на входе антенны синфазно и коэффициент отражения системы становится большим. Поэтому обычно отказываются от синфазного возбуждения отдельных щелей и выбирают расстояние между ними d¹l В /2.

Характерной особенностью получаемой таким образом нерезонансной волноводно-щелевой антенны (НВЩА) является более широкая полоса частот, в пределах которой имеет место хорошее согласование, так как отдельные отражения при большом числе излучателей почти полностью компенсируются. Однако отличие расстояния между щелями от l В /2 приводит к их несинфазному возбуждению падающей волной и отклонению направления главного максимума излучения от нормали к оси антенны. Для устранения отражения от конца волновода обычно устанавливают оконечную поглощающую нагрузку.

Как было указано выше, НВЩА имеет хорошее согласование с фидером в достаточно широком диапазоне. Исключение составляет случай, когда d»l В /2; при этом отраженные волны складываются в фазе и коэффициент бегущей волны (КБВ) в волноводе резко падает. Подобный характер изменения КБВ при приближении расстояния между щелями к величине l В /2 носит название эффекта нормали.

Недостатком НВЩА являются меньший, чем у резонансных антенн, коэффициент полезного действия (для его увеличения следует повышать интенсивность возбуждения щелей) и не устранимые амплитудные искажения (для их уменьшения следует снижать интенсивность возбуждения щелей). Исходя из этого, интенсивность возбуждения необходимо выбирать из компромиссных соображений.

4. Особенности антенн доплеровского измерения скорости и угла сноса самолета (антенн ДИСС)

Задача по определению истинного местоположения летательного аппарата (ЛА) в пространстве при воздействии на него метеорологических факторов может быть решена, если известны продольная и поперечная составляющие его скорости. Данные величины обычно определяются косвенно путем измерения доплеровских частот. Известно , что радиосигнал частотой f, отраженный от объекта (например, от ЛА), движущегося в пространстве со скоростью V, получает дополнительное приращение по частоте

,

где a - угол между вектором скорости и радиальным направлением на ЛА. Знак доплеровского приращения положительный, если объект движется навстречу источнику радиоизлучения, и отрицательный, если объект удаляется от него.

Антенны ДИСС позволяют, измеряя доплеровские составляющие, определять продольную и поперечную скорости ЛА, и скорость его перемещения в вертикальном направлении. Такие антенны формируют четыре луча так, как показано на рис.2.


Поскольку доплеровские составляющие, вызванные движением ЛА с некоторой скоростью, в передних и задних лучах имеют разный знак, а случайные (помеховые) составляющие в них приблизительно одинаковы, то, вычитая сигналы со второй пары лучей из сигналов первой пары, можно добиться компенсации помехи и, следовательно, повышения точности измерения скорости ЛА.

Антенны доплеровского измерения скорости и угла сноса самолета часто строятся на основе решеток ВЩА. Для защиты от атмосферных осадков и пыли раскрыв антенных решеток закрывают диэлектрической пластиной или помещают всю излучающую систему в радиопрозрачный обтекатель.

антенна волновод щель доплеровский

5. Расчёт ВЩА

5.1 Расчёт широкой стенки волновода

Решим систему уравнений, из которой найдем a и лкр.

а надо выбрать таким чтобы длина волны в волноводе состовляла 0.9 от критической длины волны.

5.2 Расчёт расстояния между щелями d, возьмём цmax=-20 град, d найдём решив уравнение.

Журнал "Радио", номер 9, 1999г.

Если судить по иностранной радиолюбительской литературе, скелетно-щелевая антенна пользуется популярностью на частотах выше 20 МГц. В публикуемой статье предпринята попытка ответить на вопрос - насколько заявленный в литературе ее коэффициент направленного действия соответствует действительности.

В книгах по УКВ антеннам неоднократно описывалась так называемая скелетно-щелевая антенна, причем все без исключения публикации сообщали о ее весьма высоких параметрах, большом коэффициенте направленного действия (КНД), широкой полосе частот и удобстве настройки. Идея антенны предложена Дж. Рамсеем еще в 1949 г. , ее конструкция показана на рис.1, заимствованном из . Активный элемент антенны представляет собой три параллельных полуволновых диполя, расположенных в три этажа друг над другом.

Для уменьшения габаритов антенны концы верхнего и нижнего диполей согнуты под прямым углом по направлению к среднему диполю и соединены с ним. От него же они и возбуждаются. Средний диполь сделан разрезным и соединен с согласующей четвертьволновой двухпроводной линией, одновременно служащей для крепления рефлектора. Рефлектор выполнен как у волнового канала в виде одиночного вибратора, электрическая длина которого несколько больше полуволны. Размеры антенны в длинах волн и значения коэффициента укорочения k, зависящего от диаметра проводников (трубок) d, приведены на рис. 1. Перемещая точку питания XX вдоль двухпроводной линии, можно изменять входное сопротивление антенны от нулевого (около рефлектора) до примерно 400 Ом (в точке YY около активного элемента).

Распределение тока в активном элементе показано на рис. 2. Видно, что пучности (максимумы) тока расположены как раз посередине горизонтальных частей элемента, образуя трехэтажную синфазную систему. В вертикальных частях активного элемента токи невелики и направлены навстречу друг другу. Кроме того, здесь находятся четыре узла тока, поэтому излучение вертикальных частей в дальней зоне отсутствует. Напомним, что в дальней зоне практически полностью формируется диаграмма направленности антенны. Расстояние до дальней зоны составляет несколько длин волн. Оно тем больше, чем больше КНД антенны.

Активный элемент скелетно-щелевой антенны можно также рассматривать как два квадрата, совмещенных одной стороной и точками питания. Однако по сравнению с двумя полноразмерными квадратами периметр активного элемента скелетно-щелевой антенны получается несколько меньше, вероятно изза укорачивающего действия емкости между вертикальными проводниками элемента. Похожую антенну предложил К. Харченко , но в ней два квадрата запитаны с углов и совмещены точками питания.

У простой скелетно-щелевой антенны недостаточно эффективен рефлектор. Устранить этот недостаток можно, выполнив рефлектор точно так же, как и активный элемент (в виде такой же трехэтажной конструкции вибраторов). Двухпроводные линии теперь уже нельзя разместить между элементами, но никто не мешает провести их в плоскости каждого элемента к точке с нулевым потенциалом в середине нижнего горизонтального вибратора.

То, что получается после такой модификации, изображено на рис. 3. Размеры самих элементов остаются прежними, а расстояние между активным элементом и рефлектором уменьшается до 0,18. У этой антенны есть и еще одно достоинство. Перемещая по двухпроводным линиям закорачивающие перемычки, элементы удается подстраивать ее на нужную частоту, а передвигая перемычку рефлектора, легко настроить антенну на максимальный КНД или отношение излучения вперед-назад.

Для такой двухэлементной антенны, описанной в [ и ], сообщается о необычайно высоком КНД в 14...16 дБ! Если бы вторая из названных книг была не серьезным изданием, тогда еще можно было махнуть рукой и не принимать этой цифры всерьез. Но эта книга в целом очень хорошая и почти не содержит ошибок. Ее автор, конечно, не мог испытать все множество приведенных в ней конструкций. Следовательно, если это ошибка, то она появилась раньше, в каких-то других изданиях, и найти первоисточник теперь затруднительно. Вполне понятно, что синфазная система вибраторов должна давать больший КНД, чем одиночный вибратор, но вопрос - насколько? Хотя в на с. 100 и утверждается, что антенна "...фактически является шестиэлементной трехэтажной синфазной", но ведь вибраторы оказываются довольно близко друг к другу, и к тому же укорочены. Это неизбежно должно снизить эффективность. Таким образом, вопросов оказалось больше, чем ответов. К тому же знакомые автору радиолюбители собрались строить именно такую антенну на диапазон 10 метров и уже готовы были потратиться на материал, а он нынче недешев!

Чтобы получить ясный и четкий ответ на вопрос о КНД, был проведен эксперимент в диапазоне 432 МГц. Элементы были согнуты в соответствии с рис. 3 из отрезков эмалированного медного провода диаметром 1,5 мм, соединения пропаяны, а проводники линий в местах установки замыкающих перемычек и присоединения кабеля зачищены от изоляции. Вся конструкция была собрана на деревянном каркасе из сухих тонких реек. Кабель питания проходил от точек питания вдоль того проводника двухпроводной линии, с которым соединялась оплетка, вертикально вниз и подключался непосредственно к выходу генератора стандартных сигналов. Индикатором поля служил полуволновый диполь с детектором и микроамперметром. Он располагался на штативе на расстоянии нескольких метров от антенны. Антенна также закреплялась на примитивном поворотном штативе, который позволял изменять ее ориентацию.

Настроилась антенна достаточно легко и быстро, просто по максимуму излучения в главном направлении. При указанных размерах на частоте 432 МГц расстояния замыкающих перемычек от основания двухпроводных линий для настроенной антенны получились такими: у рефлектора - 43 мм, у активного элемента - 28 мм. Расстояние до точки подключения 50-омного кабеля было 70 мм.

При настройке на максимум КНД обнаруживается небольшой задний лепесток. Подстроив рефлектор, его можно подавить практически полностью. Излучение вбок, вверх и вниз отсутствовало.

КНД, точнее выигрыш антенны, равный произведению КНД и КПД, определялся следующим образом: на индикаторе отмечался уровень сигнала, создаваемый антенной в главном направлении, затем вместо антенны к питающему кабелю подсоединялся полуволновый диполь, расположенный в той же точке пространства. Уровень сигнала от генератора повышался настолько, чтобы получить на индикаторе те же самые показания. Отсчитанное по аттенюатору генератора изменение уровня сигнала численно равно выигрышу антенны относительно полуволнового диполя. Для данной антенны он оказался равным 7 dBd. Относительно изотропного (всенаправленного) излучателя он будет на 2,15 dB больше и составит около 9,2 dBi.

Обратите внимание на буквы d и i в обозначении децибелов - в литературе по антеннам так принято указывать, относительно какого излучателя измерен КНД. Ширина диаграммы направленности по половинной мощности составила в горизонтальной плоскости (по азимуту) около 60°, а в вертикальной плоскости (по углу места) около 90°. Имея эти данные, КНД можно рассчитать и еще одним способом: телесный угол, в который излучает антенна, равен произведению линейных углов, соответствующих ширине диаграммы и выраженных в радианах. Получаем значение около 1,5 стерадиана. В то же время изотропная антенна излучает в телесный угол 4 , или 12,6 стерадиана. КНД по определению есть отношение этих телесных углов и составляет 12,6/1,5 = 8,4 или 9,2 dBi.

Получив столь хорошее совпадение значений КНД, определенных двумя методами, автор решил, что измерять больше уже нечего и с легким разочарованием лишний раз убедился, что чудес в антенной технике не бывает. Тем не менее антенна работает очень хорошо и при небольших габаритах (330x120x120 мм в диапазоне 432 МГц) обеспечивает весьма приличный выигрыш.